These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Secondary Phase Formation Mechanism in the Mo-Back Contact Region during Sulfo-Selenization Using a Metal Precursor: Effect of Wettability between a Liquid Metal and Substrate on Secondary Phase Formation. Author: Kim SY, Kim SH, Hong S, Son DH, Kim YI, Kim S, Ahn K, Yang KJ, Kim DH, Kang JK. Journal: ACS Appl Mater Interfaces; 2019 Jul 03; 11(26):23160-23167. PubMed ID: 31252489. Abstract: Recently, highly efficient CZTS solar cells using pure metal precursors have been reported, and our group created a cell with 12.6% efficiency, which is equivalent to the long-lasting world record of IBM. In this study, we report a new secondary phase formation mechanism in the back contact interface. Previously, CZTSSe decomposition with Mo has been proposed to explain the secondary phase and void formation in the Mo-back contact region. In our sulfo-selenization system, the formation of voids and secondary phases is well explained by the unique wetting properties of Mo and the liquid metal above the peritectic reaction (η-Cu6Sn5 → ε-Cu3Sn + liquid Sn) temperature. Good wetting between the liquid Sn and the Mo substrate was observed because of strong metallic bonding between the liquid metal and Mo layer. Thus, some ε-Cu3Sn and liquid Sn likely remained on the Mo layer during the sulfo-selenization process, and Cu-SSe and Cu-Sn-SSe phases formed on the Mo side. When bare soda lime glass (SLG) was used as a substrate, nonwetting adhesion was observed because of weak van der Walls interactions between the liquid metal and substrate. The Cu-Sn alloy did not remain on the SLG surface, and Cu-SSe and Cu-Sn-SSe phases were not observed after the final sulfo-selenization process. Additionally, Mo/SLG substrates coated with a thin Al2O3 layer (1-5 nm) were used to control secondary phase formation by changing the wetting properties between Mo and the liquid metal. A 1 nm Al2O3 layer was enough to control secondary phase formation at the CZTSSe/Mo and void/Mo interfaces, and a 2 nm Al2O3 layer was enough to perfectly control secondary phase formation at the Mo interface and Mo-SSe formation.[Abstract] [Full Text] [Related] [New Search]