These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fibroblast growth factor receptor promotes progression of cutaneous squamous cell carcinoma.
    Author: Khandelwal AR, Kent B, Hillary S, Alam MM, Ma X, Gu X, DiGiovanni J, Nathan CO.
    Journal: Mol Carcinog; 2019 Oct; 58(10):1715-1725. PubMed ID: 31254372.
    Abstract:
    Cutaneous squamous cell carcinoma (cSCC) is a keratinocyte-derived invasive and metastatic tumor of the skin. It is the second-most commonly diagnosed form of skin cancer striking 200 000 Americans annually. Further, in organ transplant patients, there is a 65- to 100-fold increased incidence of cSCC compared to the general population. Excision of cSCC of the head and neck results in significant facial disfigurement. Therefore, increased understanding of the mechanisms involved in the pathogeneses of cSCC could identify means to prevent, inhibit, and reverse this process. In our previous studies, inhibition of fibroblast growth factor receptor (FGFR) significantly decreased ultraviolet B-induced epidermal hyperplasia and hyperproliferation in SKH-1 mice, suggesting an important role for FGFR signaling in skin cancer development. However, the role of FGFR signaling in the progression of cSCC is not yet elucidated. Analysis of the expression of FGFR in cSCC cells and normal epidermal keratinocytes revealed protein overexpression and increased FGFR2 activation in cSCC cells compared to normal keratinocytes. Further, tumor cell-specific overexpression of FGFR2 was detected in human cSCCs, whereas the expression of FGFR2 was low in premalignant lesions and normal skin. Pretreatment with the pan-FGFR inhibitor; AZD4547 significantly decreased cSCC cell-cycle traverse, proliferation, migration, and motility. Interestingly, AZD4547 also significantly downregulated mammalian target of rapamycin complex 1 and AKT activation in cSCC cells, suggesting an important role of these signaling pathways in FGFR-mediated effects. To further bolster the in vitro studies, NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice with SCC12A tumor xenografts treated with AZD4547 (15 mg/kg/bw, twice weekly oral gavage) exhibited significantly decreased tumor volume compared to the vehicle-only treatment group. The current studies provide mechanistic evidence for the role of FGFR and selectively FGFR2 in the early progression of cSCC and identifies FGFR as a putative therapeutic target in the treatment of skin cancer.
    [Abstract] [Full Text] [Related] [New Search]