These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cu2+-Modulated in situ growth of quantum dots for split-type photoelectrochemical immunoassay of prostate-specific antigen.
    Author: Zang Y, Ju Y, Jiang J, Xu Q, Chu M, Xue H.
    Journal: Analyst; 2019 Aug 07; 144(15):4661-4666. PubMed ID: 31259991.
    Abstract:
    A split-type photoelectrochemical immunosensor was designed for the ultrasensitive monitoring of prostate-specific antigen (PSA) based on a Cu2+-mediated catalytic reaction for inhibiting the in situ generation of CdS quantum dots (QDs) coupled with the enhancement of the CdS/MoS2 heterojunction; it was constructed by the stepwise modification of MoS2 QDs and CdS QDs onto an ITO electrode surface. In the presence of PSA, CuO NP-labeled anti-PSA antibodies were immobilized onto an anti-PSA antibody-modified 96-well plate via a sandwich immunoreaction and dissolution by hydrochloric acid to obtain a large number of Cu2+ ions. As the Cu2+-triggered catalytic oxidization of glutathione occurred, the in situ growth of CdS QDs as a signal indicator was significantly suppressed, resulting in reduction in the photocurrent response. Under optimal conditions, the biosensor exhibited desirable linearity in the range from 0.5 pg mL-1 to 10 ng mL-1, low detection limit of 0.29 pg mL-1, satisfactory selectivity, and good stability. It was applied to PSA detection in human serum, suggesting a great potential for early diagnostics of some cancers.
    [Abstract] [Full Text] [Related] [New Search]