These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Earthworms and mycorrhization increase copper phytoextraction by Canavalia ensiformis in sandy soil. Author: Santana NA, Ferreira PAA, Tarouco CP, Schardong IS, Antoniolli ZI, Nicoloso FT, Jacques RJS. Journal: Ecotoxicol Environ Saf; 2019 Oct 30; 182():109383. PubMed ID: 31260919. Abstract: Phytoremediation is an alternative for remediating soil contamination by copper, and its efficiency has been shown to increase when arbuscular mycorrhizal fungi (AMF) and earthworms are separately inoculated into the soil. This study evaluated the isolated and combined effects of inoculating earthworms and arbuscular mycorrhizal fungi into a sandy soil on copper phytoremediation by Canavalia ensiformis. The plants were grown in a greenhouse in soil contaminated with 100 mg Cu kg-1 with and without being inoculated with the arbuscular mycorrhizal fungus Rhizoglomus clarum and the earthworm Eisenia andrei. The availabilities of solid-phase Cu and other nutrients in the soil solution and plant growth were evaluated along with Cu phytotoxicity based on photochemical efficiency and oxidative stress enzyme activity. Accumulation of Cu and other nutrients in the shoots and roots; mycorrhizal colonization, nodulation, and reproduction; and Cu accumulation in the earthworm tissues were also evaluated. The copper caused photosynthetic and biochemical damage that reduced the shoot dry weight by 44% and the root dry weight by 29%. However, the arbuscular mycorrhizal fungus alleviated the Cu toxicity to the plant and increased the shoot dry weight by 81% in the contaminated soil. The earthworms increased the Cu uptake and translocation to the shoot by 31%. The combined presence of the arbuscular mycorrhizal fungus and earthworms in the contaminated soil increased the growth and Cu content of the aerial plant tissues, yielding a 200% increase in Cu accumulation (metal content × biomass) in the C. ensiformis shoots. Combined inoculation with earthworms and arbuscular mycorrhizal fungi increased copper phytoextraction by Canavalia ensiformis in a sandy soil.[Abstract] [Full Text] [Related] [New Search]