These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The long non-coding RNA HOTAIRM1 suppresses cell progression via sponging endogenous miR-17-5p/ B-cell translocation gene 3 (BTG3) axis in 5-fluorouracil resistant colorectal cancer cells.
    Author: Ren T, Hou J, Liu C, Shan F, Xiong X, Qin A, Chen J, Ren W.
    Journal: Biomed Pharmacother; 2019 Sep; 117():109171. PubMed ID: 31261026.
    Abstract:
    5-Fluorouracil (5-FU)-based chemotherapy has always been the first-line treatment of colorectal cancer (CRC). However, the occurrence of clinical 5-FU resistance is a major reason for CRC therapy failure. This study intended to explore the possible role of long non-coding RNA HOTAIRM1 (HOTAIRM1) in the pathogenesis of 5-FU resistant CRC and its underlying mechanism. Our data showed that HOTAIRM1 was downregulated in CRC tissues and cell lines (HCT116 and SW480), and even lower in 5-FU resistant CRC tissues and cell lines (HCT116/5-FU and SW480/5-FU). In vitro, effects of HOTAIRM1 dysregulation in 5-FU resistant CRC cells were investigated and its overexpression could reduce cell viability, invasion, migration, and multi-drug resistance as evidenced by MTT assay, Transwell assay, epithelial-mesenchymal transition (EMT), and western blot analyzing expression of drug-resistant genes MRP1 and MDR1, respectively. Mechanically, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) identified that HOTAIRM1 and B-cell translocation gene 3 (BTG3) were target genes of miR-17-5p. Moreover, miR-17-5p was upregulated and BTG3 was downregulated in HCT116/5-FU and SW480/5-FU cells. Silencing of miR-17-5p showed suppressive role on cell viability, invasion, migration, and multi-drug resistance in HCT116/5-FU and SW480/5-FU cells, which could be abolished by HOTAIRM1 knockdown. Similarly, ectopic expression of miR-17-5p reversed BTG3-mediated inhibition on cell viability, invasion, migration, and multi-drug resistance. In vivo, the tumorigenesis of HCT116/5-FU cells when highly expressed HOTAIRM1 by lentivirus infection was inhibited through downregulating miR-17-5p and upregulating BTG3. In conclusion, HOTAIRM1 might act as a tumor-suppressor in 5-FU resistant CRC cells in vitro and in vivo through downregulating miR-17-5p/BTG3 pathway and inhibiting multi-drug resistance.
    [Abstract] [Full Text] [Related] [New Search]