These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The First Study on the Reactivity of Water Vapor in Metal-Organic Frameworks with Platinum Nanocrystals.
    Author: Ogiwara N, Kobayashi H, Concepción P, Rey F, Kitagawa H.
    Journal: Angew Chem Int Ed Engl; 2019 Aug 19; 58(34):11731-11736. PubMed ID: 31267626.
    Abstract:
    We first studied the reactivity of H2 O vapor in metal-organic frameworks (MOFs) with Pt nanocrystals (NCs) through the water-gas shift (WGS) reaction. A water-stable MOF, UiO-66, serves as a highly effective support material for the WGS reaction compared with ZrO2 . The origin of the high catalytic performance was investigated using in situ IR spectroscopy. In addition, from a comparison of the catalytic activities of Pt on UiO-66, where Pt NCs are located on the surface of UiO-66 and Pt@UiO-66, where Pt NCs are coated with UiO-66, we found that the competitive effects of H2 O condensation and diffusion in the UiO-66 play important roles in the catalytic activity of Pt NCs. A thinner UiO-66 coating further enhanced the WGS reaction activity of Pt NCs by minimizing the negative effect of slow H2 O diffusion in UiO-66.
    [Abstract] [Full Text] [Related] [New Search]