These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: NLRP3 inflammasome inhibition attenuates cisplatin-induced renal fibrosis by decreasing oxidative stress and inflammation. Author: Li S, Lin Q, Shao X, Mou S, Gu L, Wang L, Zhang Z, Shen J, Zhou Y, Qi C, Jin H, Pang H, Ni Z. Journal: Exp Cell Res; 2019 Oct 01; 383(1):111488. PubMed ID: 31276670. Abstract: BACKGROUND/AIMS: The NOD-like receptor, pyrin domain containing-3 (NLRP3) inflammasome is involved in the progression of chronic kidney disease in several rodent models. Here, we investigated whether a specific inhibitor of NLRP3 inflammasome, MCC950, can attenuate cisplatin-induced renal fibrosis. MATERIALS: Renal fibrosis was induced via a series of three injections of cisplatin to male C57BL/6 mice (7.5 mg/kg body weight). Activation of NLRP3 inflammasome was detected by immunoblotting, real-time PCR, and immunofluorescence. To validate the protective effect of NLRP3 inflammasome inhibition, MCC950(20 mg/kg body weight) was daily injected into multiple-cisplatin-treated mice intraperitoneally for 14 days, starting from 4 weeks after the first dose of cisplatin. NLRP3-/- mice were used to confirm the role of NLRP3 inflammasome in cisplatin-induced renal fibrosis. RESULTS: Mice were euthanized at 6 weeks after the first dose of cisplatin treatment. In multiple-cisplatin-induced murine model, renal fibrosis was accompanied by the activation of NLRP3 inflammasome. MCC950, the specific inhibitor of NLRP3 inflammasome, reduced cisplatin-induced renal dysfunction, tubular damage, interstitial collagen deposit, and the expression of profibrotic parameters. NLRP3 inhibition might protect against cisplatin-induced renal fibrosis through the alleviation of oxidative stress and inflammation. Furthermore, inhibition of NLRP3 inflammasome activation by deleting NLRP3 gene halted the progression of cisplatin-induced renal fibrosis. CONCLUSION: Inhibition of NLRP3 inflammasome attenuates renal fibrosis due to repeated cisplatin injections, and might be identified as a potential target for attenuating cisplatin-induced chronic kidney disease.[Abstract] [Full Text] [Related] [New Search]