These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Piceatannol Protects Human Retinal Pigment Epithelial Cells against Hydrogen Peroxide Induced Oxidative Stress and Apoptosis through Modulating PI3K/Akt Signaling Pathway. Author: Hao Y, Liu J, Wang Z, Yu LL, Wang J. Journal: Nutrients; 2019 Jul 04; 11(7):. PubMed ID: 31277394. Abstract: This study investigated the protective effect and the molecular mechanism of piceatannol on hydrogen peroxide (H2O2)-induced retinal pigment epithelium cell (ARPE-19) damage. Piceatannol treatment significantly inhibited H2O2-induced RPE cell death and reactive oxygen species (ROS) generation by 64.4% and 75.0%, respectively. Results of flow cytometry showed that H2O2-induced ARPE-19 cells apoptosis was ameliorated by piceatannol supplementation, along with decreased relative protein expressions of Bax/Bcl-2, Cleave-Caspase-3, and Cleave-PARP. Moreover, piceatannol treatment induced NF-E2-related factor 2 (Nrf2) signaling activation, which was evidenced by increased transcription of anti-oxidant genes, glutamate-cysteine ligase catalytic subunit (GCLc), SOD, and HO-1. Knockdown of Nrf2 through targeted siRNA alleviated piceatannol-mediated HO-1 transcription, and significantly abolished piceatannol-mediated cytoprotection. LY294002 (PI3K inhibitor) dramatically blocked piceatannol-mediated increasing of Nrf2 nuclear translocation, HO-1 expression, and cytoprotective activity, indicating the involvement of PI3K/Akt pathway in the cytoprotective effect of piceatannol. The results from this suggest the potential of piceatannol in reducing the risk of age-related macular degeneration.[Abstract] [Full Text] [Related] [New Search]