These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cochlea and auditory nerve. Author: Eggermont JJ. Journal: Handb Clin Neurol; 2019; 160():437-449. PubMed ID: 31277867. Abstract: The transduction process in the cochlea requires patent hair cells. Population responses that reflect this patency are the cochlear microphonic (CM) and summating potential (SP). They can be measured using electrocochleography (ECochG). The CM reflects the sound waveform in the form of outer hair cell (OHC) depolarization and hyperpolarization, and the SP reflects the average voltage difference of the OHC membrane potential for depolarization and hyperpolarization. The CM can be measured using ECochG or via the so-called otoacoustic emissions, using a sensitive microphone in the ear canal. Neural population responses are called the compound action potentials (CAPs), which by frequency selective masking can be decomposed into narrow-band action potentials (NAPs) reflecting CAPs evoked by activity from small cochlear regions. Presence of CM and absence of CAPs are the diagnostic hallmarks of auditory neuropathy. Increased and prolonged SPs are often found in Ménière's disease but are too often in the normal range to be diagnostic. When including NAP waveforms, Ménière's disease can be differentiated from vestibular schwannomas, which often feature overlapping symptoms such as dizziness, hearing loss, and tinnitus. The patency of the efferent system, particularly the olivocochlear bundle, can be tested using the suppressive effect of contralateral stimulation on the otoacoustic emission amplitude.[Abstract] [Full Text] [Related] [New Search]