These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of Composite LED Light on Root Growth and Antioxidant Capacity of Cunninghamia lanceolata Tissue Culture Seedlings. Author: Xu Y, Liang Y, Yang M. Journal: Sci Rep; 2019 Jul 05; 9(1):9766. PubMed ID: 31278353. Abstract: We used the 12th generation of the Cunninghamia (C.) lanceolata tissue culture seedlings, and white light emitting diode (LED) light as control (CK). We applied five composite LED light treatments, red-blue 4:1, 8:1 (4R1B and 8R1B), red-blue-purple 8:1:1 (8R1B1P), and red-blue-purple-green 6:1:1:1, 8:1:1:1 (6R1B1P1G and 8R1B1P1G), to study the effects of light quality on root growth characteristics and antioxidant capacity of C. lanceolata tissue culture seedlings. The results showed that: (1) rooting rate, average root number, root length, root surface area, and root activity were higher with 6R1B1P1G and 8R1B1P1G treatments compared to 4R1B, 8R1B, 8R1B1P and CK treatments; and the root growth parameters under the 8R1B1P1G treatment were as high as 95.50% for rooting rate, 4.63 per plant of the average number of root, 5.95 cm root length, 1.92 cm2 surface area, and 145.56 ng/(g·h) root activity, respectively. (2) The composite lights of 4R1B, 8R1B, 8R1B1P, 6R1B1P1G, and 8R1B1P1G are beneficial for the accumulation of soluble sugar content (SSC) and soluble protein content (SPC), but not conducive for the increase of free proline content (FPC); the plants under 6R1B1P1G and 8R1B1P1G treatments had higher superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) activity and lower malondialdehyde (MDA), polyphenol oxidase (PPO) activity. (3) Redundancy analysis showed that POD activity positively correlated with root activity; SPC, SOD and CAT activities positively correlated with root growth parameters; while SSC, MDA content, APX and PPO activities negatively correlated with root growth parameters. These results suggest that the responses of root growth and antioxidant capacity of the C. lanceolata tissue culture seedlings to different light qualities vary. The relationship between root growth parameters and antioxidant capacity was closely related. Red-blue-purple-green was the most suitable composite light quality for root growth of C. lanceolata tissue culture seedlings, and 8:1:1:1 was the optimal ratio, under which the rooting rate, root activity and root growth of tissue culture seedlings peaked.[Abstract] [Full Text] [Related] [New Search]