These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Automated feature engineering improves prediction of protein-protein interactions.
    Author: Sumonja N, Gemovic B, Veljkovic N, Perovic V.
    Journal: Amino Acids; 2019 Aug; 51(8):1187-1200. PubMed ID: 31278492.
    Abstract:
    Over the last decade, various machine learning (ML) and statistical approaches for protein-protein interaction (PPI) predictions have been developed to help annotating functional interactions among proteins, essential for our system-level understanding of life. Efficient ML approaches require informative and non-redundant features. In this paper, we introduce novel types of expert-crafted sequence, evolutionary and graph features and apply automatic feature engineering to further expand feature space to improve predictive modeling. The two-step automatic feature-engineering process encompasses the hybrid method for feature generation and unsupervised feature selection, followed by supervised feature selection through a genetic algorithm (GA). The optimization of both steps allows the feature-engineering procedure to operate on a large transformed feature space with no considerable computational cost and to efficiently provide newly engineered features. Based on GA and correlation filtering, we developed a stacking algorithm GA-STACK for automatic ensembling of different ML algorithms to improve prediction performance. We introduced a unified method, HP-GAS, for the prediction of human PPIs, which incorporates GA-STACK and rests on both expert-crafted and 40% of newly engineered features. The extensive cross validation and comparison with the state-of-the-art methods showed that HP-GAS represents currently the most efficient method for proteome-wide forecasting of protein interactions, with prediction efficacy of 0.93 AUC and 0.85 accuracy. We implemented the HP-GAS method as a free standalone application which is a time-efficient and easy-to-use tool. HP-GAS software with supplementary data can be downloaded from: http://www.vinca.rs/180/tools/HP-GAS.php .
    [Abstract] [Full Text] [Related] [New Search]