These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of autophagy in mesenchymal stem cells modulates therapeutic effects on spinal cord injury. Author: Ma F, Li R, Tang H, Zhu T, Xu F, Zhu J. Journal: Brain Res; 2019 Oct 15; 1721():146321. PubMed ID: 31278935. Abstract: Transplantation with mesenchymal stem cells (MSCs) has shown beneficial effects in treating spinal cord injury. Autophagy is an evolutionarily conserved process of degradation and recycling of cellular components that plays an important role in tissue homeostasis and cellular survival. Whether regulating autophagy in MSCs may affect their therapeutic potential in spinal cord injury repair has not yet been determined. In this study, autophagy was inhibited in MSCs with lentiviruses expressing short hairpin RNA (shRNA) to knock down Becn-1 expression, and autophagy was upregulated in MSCs under nutrient starvation. These MSCs were then labelled with Hoechst and applied to spinal cord-injured rats to evaluate their therapeutic effects. After transplanting MSCs into rats with spinal cord injuries, functional recovery, immunohistochemistry, and remyelination analyses were performed. After inducing autophagy, the MSCs exhibited an accumulation of LC3-positive autophagosomes in the cytoplasm. The expression levels of neurotrophic factors, including vascular endothelial growth factor and brain derived neurotrophic factor, were significantly higher in autophagic MSCs than normal MSCs. The in vivo study showed that more labelled MSCs migrated to the lesion site after induction of autophagy. Inducing autophagy in MSCs promoted functional recovery after spinal cord injury, whereas functional recovery was weak after inhibiting autophagy in MSCs. In contrast to the autophagy inhibition group, transplanting autophagic MSCs exhibited a greater positive impact on axon regeneration, growth of serotonergic fibers, blood vessel regeneration, and myelination, indicating a multifactorial contribution to spinal cord injury repair. These results suggest that autophagy plays important roles in MSCs during spinal cord injury repair. Regulation of autophagy in MSCs before in vivo transplantation may be a potential therapeutic interventional strategy for spinal cord injury.[Abstract] [Full Text] [Related] [New Search]