These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Antisymmetric magnetoresistance in van der Waals Fe3GeTe2/graphite/Fe3GeTe2 trilayer heterostructures. Author: Albarakati S, Tan C, Chen ZJ, Partridge JG, Zheng G, Farrar L, Mayes ELH, Field MR, Lee C, Wang Y, Xiong Y, Tian M, Xiang F, Hamilton AR, Tretiakov OA, Culcer D, Zhao YJ, Wang L. Journal: Sci Adv; 2019 Jul; 5(7):eaaw0409. PubMed ID: 31281884. Abstract: With no requirements for lattice matching, van der Waals (vdW) ferromagnetic materials are rapidly establishing themselves as effective building blocks for next-generation spintronic devices. We report a hitherto rarely seen antisymmetric magnetoresistance (MR) effect in vdW heterostructured Fe3GeTe2 (FGT)/graphite/FGT devices. Unlike conventional giant MR (GMR), which is characterized by two resistance states, the MR in these vdW heterostructures features distinct high-, intermediate-, and low-resistance states. This unique characteristic is suggestive of underlying physical mechanisms that differ from those observed before. After theoretical calculations, the three-resistance behavior was attributed to a spin momentum locking induced spin-polarized current at the graphite/FGT interface. Our work reveals that ferromagnetic heterostructures assembled from vdW materials can exhibit substantially different properties to those exhibited by similar heterostructures grown in vacuum. Hence, it highlights the potential for new physics and new spintronic applications to be discovered using vdW heterostructures.[Abstract] [Full Text] [Related] [New Search]