These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: NBD-Cl modification of essential residues in mitochondrial nicotinamide nucleotide transhydrogenase from bovine heart.
    Author: Persson B, Hartog AF, Rydström J, Berden JA.
    Journal: Biochim Biophys Acta; 1988 Apr 14; 953(3):241-8. PubMed ID: 3128329.
    Abstract:
    Modification of mitochondrial nicotinamide nucleotide transhydrogenase (NADPH: NAD+ oxidoreductase, EC 1.6.1.1) with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl), followed by measurement of the absorption or fluorescence of the transhydrogenase-NBD adducts, resulted in a biphasic labelling of approx. 4-6 sulfhydryls, presumably cysteine residues. Of these 1-2 (27%) were fast-reacting and 3-4 (73%) slow-reacting sulfhydryls. In the presence of substrates, e.g., NADPH, the labelling was monophasic and all sulfhydryls were fast-reacting, suggesting that the modified sulfhydryls are predominantly localized peripheral to the NAD(P)(H)-binding sites. The rates of modification allowed the calculation of the rate constants for each phase of the labelling. Both in the absence and in the presence of a substrate, e.g., NADPH, the extent of labelling essentially parallelled the inhibition of transhydrogenase activity. Attempts to reactivate transhydrogenase by reduction of labelled sulfhydryls were not successful. Photo-induced transfer of the NBD adduct in partially inhibited transhydrogenase, from the sulfhydryls to reactive NH2 groups of amino-acid residue(s), identified as lysine residue(s), was parallelled by an inhibition of the residual transhydrogenase activity. It is suggested that a lysine localized close to the fast-reacting NBD-Cl-reactive sulfhydryl groups is essential for activity.
    [Abstract] [Full Text] [Related] [New Search]