These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Amino Acid Loss during Continuous Venovenous Hemofiltration in Critically Ill Patients.
    Author: Stapel SN, de Boer RJ, Thoral PJ, Vervloet MG, Girbes ARJ, Oudemans-van Straaten HM.
    Journal: Blood Purif; 2019; 48(4):321-329. PubMed ID: 31291614.
    Abstract:
    BACKGROUND/OBJECTIVES: During continuous venovenous hemofiltration (CVVH), there is unwanted loss of amino acids (AA) in the ultrafiltrate (UF). Solutes may also be removed by adsorption to the filter membrane. The aim was to quantify the total loss of AA via the CVVH circuit using a high-flux polysulfone membrane and to differentiate between the loss by ultrafiltration and adsorption. METHODS: Prospective observational study in ten critically ill patients, receiving predilution CVVH with a new filter, blood flow 180 mL/min, and predilution flow 2,400 mL/h. Arterial blood, postfilter blood, and UF samples were taken at baseline, and 1, 8, and 24-h after CVVH initiation, to determine AA concentrations and hematocrit. Mass transfer calculations were used to determine AA loss in the filter and by UF, and the difference between these 2. RESULTS: The median AA loss in the filter was 10.4 g/day, the median AA loss by UF was 13.4 g/day, and the median difference was -2.9 g/day (IQR -5.9 to -1.4 g/day). For the individual AA, the difference ranged from -1 g/day to +0.4 g/day, suggesting that some AA were consumed or adsorbed and others were generated. AA losses did not significantly change over the 24-h study period. CONCLUSION: During CVVH with a modern polysulfone membrane, the estimated AA loss was 13.4 g/day, which corresponds to a loss of about 11.2 g of protein per day. Adsorption did not play a major role. However, individual AA behaved differently, suggesting complex interactions and processes at the filter membrane or peripheral AA production.
    [Abstract] [Full Text] [Related] [New Search]