These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Long Non-coding RNA Zinc Finger Antisense 1 (ZFAS1) Regulates Proliferation, Migration, Invasion, and Apoptosis by Targeting MiR-7-5p in Colorectal Cancer.
    Author: Mo D, Liu W, Li Y, Cui W.
    Journal: Med Sci Monit; 2019 Jul 11; 25():5150-5158. PubMed ID: 31295229.
    Abstract:
    BACKGROUND Colorectal cancer (CRC) is one of the most common tumors, the causes of which remain unclear. Recently, many kinds of long non-coding RNAs (lncRNAs) have been identified to have an important role in the biological function of CRC. However, the effect of lncRNA zinc finger antisense 1 (ZFAS1) on development of CRC is still incompletely clear. MATERIAL AND METHODS Firstly, the expression of ZFAS1 and microRNA (miR)-7-5p in 40 CRC tissues and adjacent tissues was measured by real-time polymerase chain reaction. Then, we detected the cell proliferation, migration, invasion, and apoptosis in CRC cell lines by using Cell Counting Kit-8 assay, colony formation assay, flow analysis, and Transwell assay, respectively. Then, the relationship between ZFAS1 and miR-7-5p was verified by luciferase reporter assay. Finally, rescue experiments were conducted to confirmed that interaction of ZFAS1 and miR-7-5p in vitro. RESULTS Our results showed that ZFAS1 was upregulated in CRC tissues, correlated with overall survival rates, and negatively related to the expression of miR-7-5p. It was verified that miR-7-5p was a direct target of ZFAS1 by bioinformatics analysis and luciferase reporter assay. In addition, knockdown of miR-7-5p inhibited proliferation, migration, and invasion, and promoted apoptosis in CRC cell lines, which could be rescue by miR-7-5p inhibitor. CONCLUSIONS Our study indicated that ZFAS1 directly targeted miR-7-5p, and knockdown of it could inhibit tumor growth, migration, invasion, and induce apoptosis in CRC. These data might provide a potent treatment mechanism or promising biomarker for CRC.
    [Abstract] [Full Text] [Related] [New Search]