These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Long non-coding RNA LUCAT1/miR-5582-3p/TCF7L2 axis regulates breast cancer stemness via Wnt/β-catenin pathway.
    Author: Zheng A, Song X, Zhang L, Zhao L, Mao X, Wei M, Jin F.
    Journal: J Exp Clin Cancer Res; 2019 Jul 12; 38(1):305. PubMed ID: 31300015.
    Abstract:
    BACKGROUND: The mechanism underlying breast cancer stem cell (BCSCs) characteristics remains to be fully elucidated. Accumulating evidence implies that long noncoding RNAs (lncRNAs) play a pivotal role in regulating BCSCs stemness. METHODS: LncRNA LUCAT1 expression was assessed in breast cancer tissues (n = 151 cases) by in situ hybridization. Sphere-formation assay and colony formation assay were used to detect cell self-renewal and proliferation, respectively. RNA immunoprecipitation, RNA pull down and luciferase reporter assays were used to identify LUCAT1 and TCF7L2 as the direct target of miR-5582-3p. The activity of the Wnt/β-catenin pathway was analyzed by TOP/FOP-Flash reporter assays, western blot and immunohistochemistry (IHC). RESULTS: This study found LUCAT1 expression was related to tumor size (p = 0.015), lymph node metastasis (p = 0.002) and TNM staging (p < 0.001). High LUCAT1 expression indicated a shorter overall survival (p = 0.006) and disease-free survival (p = 0.011). Furthermore, LUCAT1 was more expressed in BCSCs than in breast cancer cells (BCCs) by lncRNA microarray chips. LUCAT1 up-regulation promoted proliferation of BCCs, while LUCAT1 down-regulation inhibited self-renewal of BCSCs. MiR-5582-3p was directly bound to LUCAT1 and TCF7L2 and negatively regulated their expression. LUCAT1 affected Wnt/β-catenin pathway. CONCLUSIONS: LUCAT1 might be a significant biomarker to evaluate prognosis in breast cancer. LUCAT1 increased stem-like properties of BCCs and stemness of BCSCs by competitively binding miR-5582-3p with TCF7L2 and enhancing the Wnt/β-catenin pathway. The LUCAT1/miR-5582-3p/TCF7L2 axis provides insights for regulatory mechanism of stemness, and new strategies for clinical practice.
    [Abstract] [Full Text] [Related] [New Search]