These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Heterogeneity in human acid beta-glucosidase revealed by cellulose-acetate electrophoresis. Author: Sa Miranda MC, Aerts JM, Pinto RA, Magalhaes JA, Barranger JA, Tager JM, Schram AW. Journal: Biochim Biophys Acta; 1988 May 12; 965(2-3):163-8. PubMed ID: 3130106. Abstract: Cellulose-acetate gel electrophoresis, a technique commonly used for the separation of human acid hydrolases, was applied to study heterogeneity in acid beta-glucosidase (EC 3.2.1.45). With this technique, three forms of beta-glucosidase were distinguishable in extracts of several tissues. The most anodic beta-glucosidase activity (band 3) represents the broad-specificity beta-glucosidase that is not deficient in Gaucher disease and is not inhibited by conduritol B-epoxide (CBE). The beta-glucosidase activity was deficient in Gaucher disease. A third beta-glucosidase activity with an intermediate mobility (band 2) was also inhibited by CBE and deficient in Gaucher disease. Band 1 and band 2 beta-glucosidase thus represent different forms of glucocerebrosidase. By adding phosphatidylserine and sphingolipid activator protein (SAP-2), monomeric glucocerebrosidase could be completely converted into a form that comigrated with band 2 beta-glucosidase of tissue extracts. The addition of phosphatidylserine only also resulted in a changed mobility of the monomeric enzyme, but the migration in this case differed from that of band 2 beta-glucosidase of tissue extracts. The electrophoretic profile of beta-glucosidase activity of tissue extracts changed upon ethanol/chloroform extraction: the two glucocerebrosidase forms were converted into a band with a mobility identical to that of band 1 beta-glucosidase. Our findings indicate that the interaction of glucocerebrosidase with phospholipid and SAP-2 has major effects on the mobility of the enzyme in the cellulose-acetate gel electrophoresis system. The findings with the cellulose-acetate gel electrophoretic system are discussed in relation to the heterogeneity in glucocerebrosidase observed with sucrose density gradient analysis, immunochemical methods and isoelectric focussing studies.[Abstract] [Full Text] [Related] [New Search]