These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cholinergic and peptidergic neurotransmission in the adrenal medulla: A dynamic control of stimulus-secretion coupling. Author: Guérineau NC. Journal: IUBMB Life; 2020 Apr; 72(4):553-567. PubMed ID: 31301221. Abstract: Synaptic neurotransmission at the splanchnic nerve-chromaffin cell synapse is a chief element of the stimulus-secretion coupling in the adrenal medullary tissue, managing and regulating the secretion of catecholamines. Making the state of play more intricate than initially envisioned, the synaptic vesicles of nerve terminals innervating the medulla contain various compounds, including various neurotransmitters and neuropeptides. Under basal conditions associated with a low splanchnic nerve discharge rate, neurotransmission is ensured by the synaptic release of the primary neurotransmitter acetylcholine (ACh). Under sustained and repetitive stimulations of the splanchnic nerve, as triggered in response to stressors, the synaptic release of neuropeptides, such as the pituitary adenylate cyclase-activating polypeptide PACAP, supplants ACh release. The anatomical and functional changes that occur presynaptically at the preganglionic splanchnic nerve, combined with changes occurring postsynaptically at nicotinic acetylcholine receptors (nAChRs), confer the adrenomedullary synapses a solid and persistent aptitude to functional remodeling, from birth to aging. The present review focuses on the composite cholinergic and noncholinergic nature of neurotransmission occurring at the splanchnic nerve-chromaffin cell synapse and its remodeling in response to physiological or pathological stimuli.[Abstract] [Full Text] [Related] [New Search]