These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: An eco-friendly biorefinery strategy for xylooligosaccharides production from sugarcane bagasse using cellulosic derived gluconic acid as efficient catalyst. Author: Zhou X, Zhao J, Zhang X, Xu Y. Journal: Bioresour Technol; 2019 Oct; 289():121755. PubMed ID: 31301946. Abstract: A novel approach was proposed for the production of xylooligosaccharides by direct pre-hydrolysis using gluconic acid as catalyst. Maximum xylooligosaccharides (degree of polymerization 2-6) yield of 53.2% could be obtained in 60 min through 5% gluconic acid hydrolysis of sugarcane bagasse at 150 °C. Furthermore, the yield of glucose from solids following gluconic acid hydrolysis treatment was 86.2% after fed-batch enzymatic hydrolysis with 10% solids loading. Results indicated that gluconic acid pretreatment combined with enzymatic hydrolysis could be successfully applied to sugarcane bagasse substrate. Subsequently, glucose could be efficiently bio-oxidized to gluconic acid by Gluconobacter oxydans ATCC 621H with 93.1% yield, and sugarcane bagasse derived gluconic acid has been proved to be an effective catalyst for xylooligosaccharides production. In this study, xylooligosaccharides production from sugarcane bagasse by gluconic acid hydrolysis demonstrated a great potential with respect to the production of these probiotics around the world.[Abstract] [Full Text] [Related] [New Search]