These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dulaglutide inhibits high glucose- induced endothelial dysfunction and NLRP3 inflammasome activation.
    Author: Luo X, Hu Y, He S, Ye Q, Lv Z, Liu J, Chen X.
    Journal: Arch Biochem Biophys; 2019 Aug 15; 671():203-209. PubMed ID: 31302140.
    Abstract:
    Activation of the NLRP3 inflammasome plays an important role in high glucose- induced endothelial dysfunction in patients with type 2 diabetes mellitus (T2DM). Dulaglutide, a newly developed glucagon-like peptide-1 receptor (GLP-1R) agonist, has been approved for the management of T2DM. In the current study, we aimed to investigate whether dulaglutide possesses a protective effect against high glucose- induced activation of the NLRP3 inflammasome. Our results indicate that dulaglutide treatment prevented high glucose- induced generation of reactive oxygen species (ROS) and protein carbonyl, as well as the expression of NADPH oxidase 4 (NOX-4) in human umbilical vein endothelial cells (HUVECs). Dulaglutide treatment could inhibit high glucose- induced release of lactate dehydrogenase (LDH) and the expression of TXNIP. Dulaglutide suppressed high glucose- induced activation of NLRP3 inflammasome by reducing the expression of NLRP3, ASC, and cleaved caspase 1 (P10). Notably, dulaglutide treatment suppressed high glucose- induced maturation of IL-1β and IL-18. Mechanistically, our findings indicate that SIRT1 was involved in this process by showing that knockdown of SIRT1 by transfection with SIRT1 siRNA abolished the inhibitory effects of dulaglutide on IL-1β and IL-18 secretion via suppression of NLRP3, ASC, and p10. These data suggest that dulaglutide might serve as a potential drug for the treatment of cardiovascular complications in T2DM patients.
    [Abstract] [Full Text] [Related] [New Search]