These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Three-dimensional cultured liver-on-a-Chip with mature hepatocyte-like cells derived from human pluripotent stem cells. Author: Kamei KI, Yoshioka M, Terada S, Tokunaga Y, Chen Y. Journal: Biomed Microdevices; 2019 Jul 15; 21(3):73. PubMed ID: 31304567. Abstract: Liver-on-a-Chip technology holds considerable potential for applications in drug screening and chemical-safety testing. To establish such platforms, functional hepatocytes are required; however, primary hepatocytes are commonly used, despite problems involving donor limitations, lot-to-lot variation, and unsatisfactory two-dimensional culture methods. Although human pluripotent stem cells (hPSCs) may represent a strong alternative contender to address the aforementioned issues, remaining technological challenges include the robust, highly efficient production of high-purity hepatic clusters. In addition, current Liver-on-a-Chip platforms are relatively complicated and not applicable for high-throughput experiments. Here, we develop a very simple Liver-on-a-Chip platform with mature and functional hepatocyte-like cells derived from hPSCs. To establish a method for hepatic differentiation of hPSCs, cells were first treated by inhibiting the phosphoinositide 3-kinase- and Rho-associated protein kinase-signaling pathways to stop self-renewal and improve survival, respectively, which enabled the formation of a well-defined endoderm and facilitated hepatocyte commitment. Next, a simple microfluidic device was used to create a three-dimensional (3D) culture environment that enhanced the maturation and function of hepatocyte-like cells by increasing the expression of both hepatic maturation markers and cytochrome P450. Finally, we confirmed improvements in hepatic functions, such as drug uptake/excretion capabilities, in >90% of 3D-matured hepatocyte-like cells by indocyanin green assay. These results indicated that the incorporation of hPSC-derived hepatocytes on our Liver-on-a-Chip platform may serve to enhance the processes involved in drug screening and chemical-safety testing.[Abstract] [Full Text] [Related] [New Search]