These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of Silver Nanoparticle from Dicoma anomala Sond. Root Extract on MCF-7 Cancer Cell Line and NF54 Parasite Strain: an In Vitro Study. Author: Tripathy S, Rademan S, Matsabisa MG. Journal: Biol Trace Elem Res; 2020 May; 195(1):82-94. PubMed ID: 31309447. Abstract: Biogenic silver nanoparticles (AgNPs) continue captivating researchers in biomedicine field of research. Dicoma anomala Sond. plant, locally known as hloenya, hlonya, maagbossie, inyongwana, is widely recommended by South African traditional health practitioners (THPs) to treat against different health issues. The antiplasmodial effects of novel sesquiterpene molecules (C30H36O7; MW: 509.25) isolated from D. anomala Sond. have been reported by us (Patent US 8,586,112 B2). The aim of the study was to determine the anticancer activity of AgNPs synthesized using D. anomala plant root extract and the antiparasitic potency of AgNP-conjugated sesquiterpene. Nanoparticles have been characterized using different methods. Anticancer activity of AgNPs was evaluated against the MCF-7. This study also revealed that the AgNP-conjugated sesquiterpene has shown better antiparasitic activity against Plasmodium falciparum NF54 strain. One-pot synthesized AgNPs using Dicoma anomala Sond. root extract caused oxidative damage in breast cancer cells. These findings indicate the need for more in-depth research in the use of the AgNPs and sesquiterpene for development into potential leads as an antimalarial candidates and to improve the bioavailability of these sesquiterpenes.[Abstract] [Full Text] [Related] [New Search]