These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Arsenic Disulfide Combined with L-Buthionine-(S, R)-Sulfoximine Induces Synergistic Antitumor Effects in Two-Dimensional and Three-Dimensional Models of MCF-7 Breast Carcinoma Cells. Author: Zhao Y, Tanaka S, Yuan B, Sugiyama K, Onda K, Kiyomi A, Takagi N, Sugiura M, Hirano T. Journal: Am J Chin Med; 2019; 47(5):1149-1170. PubMed ID: 31311297. Abstract: Three-dimensionally (3D) cultured tumor cells (spheroids) exhibit more resistance to therapeutic agents than the cells cultured in traditional two-dimensional (2D) system (monolayers). We previously demonstrated that arsenic disulfide (As2S2) exerted significant anticancer efficacies in both 2D- and 3D-cultured MCF-7 cells, whereas 3D spheroids were shown to be resistant to the As2S2 treatment. L-buthionine-(S, R)-sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, has been regarded to be a potent candidate for combinatorial treatment due to its GSH modulation function. In the present study, we introduced BSO in combination with As2S2 at a low concentration to investigate the possible enhancing anticancer efficacy by the combinatorial treatment on 2D- and 3D-cultured MCF-7 cells. Our results presented for the first time that the combination of As2S2 and BSO exerted potent anticancer synergism in both MCF-7 monolayers and spheroids. The IC50 values of As2S2 in combinatorial treatment were significantly lower than those in treatment of As2S2 alone in both 2D- and 3D-cultured MCF-7 cells (P<0.01, respectively). In addition, augmented induction of apoptosis and enhanced cell cycle arrest along with the regulation of apoptosis- and cell cycle-related proteins, as well as synergistic inhibitions of PI3K/Akt signals, were also observed following co-treatment of As2S2 and BSO. Notably, the combinatorial treatment significantly decreased the cellular GSH levels in both 2D- and 3D-cultured MCF-7 cells in comparison with each agent alone (P<0.05 in each). Our results suggest that the combinatorial treatment with As2S2 and BSO could be a promising novel strategy to reverse arsenic resistance in human breast cancer.[Abstract] [Full Text] [Related] [New Search]