These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Systemic administration of quality- and quantity-controlled PBMNCs reduces bisphosphonate-related osteonecrosis of jaw-like lesions in mice. Author: Kuroshima S, Nakajima K, Sasaki M, I T, Sumita Y, Asahara T, Asahina I, Sawase T. Journal: Stem Cell Res Ther; 2019 Jul 16; 10(1):209. PubMed ID: 31311585. Abstract: BACKGROUND: Definitive treatment strategies for bisphosphonate-related osteonecrosis of the jaw (BRONJ) have not been developed. Cell-based therapy is an attractive treatment method for intractable diseases in the medical and dental fields; however, approval has been challenging in dentistry. Recently, we developed quality- and quantity (QQ)-controlled peripheral blood mononuclear cells (PBMNCs) that have anti-inflammatory and pro-angiogenesis effects. The aim of this study was to investigate the effects of QQ-controlled PBMNC transplantation on BRONJ-like lesions in mice. METHODS: To create high-prevalence BRONJ-like lesions, cyclophosphamide (CY) and zoledronate (ZA) were used with tooth extraction. Drug treatment was performed for 5 weeks. QQ-controlled PBMNC transplantation was performed immediately following tooth extraction of both maxillary first molars at 3 weeks after drug administration. Mice were euthanized at 2 weeks post-extraction. Histomorphometric and immunohistochemical analyses, microcomputed tomography assessment, and quantitative polymerase chain reaction evaluation were conducted using maxillae and long bones. RESULTS: ZA effects on long bones were noted, regardless of CY. Severely inhibited osseous and soft tissue wound healing of tooth extraction sockets was induced by CY/ZA combination therapy, which was diagnosed as BRONJ-like lesions. QQ-controlled PBMNC transplantation reduced BRONJ-like lesions by improving soft tissue healing with increased M1 and M2 macrophages and enhanced neovascularization in the connective tissue of tooth extraction sockets. QQ-controlled PBMNC transplantation also reduced inflammation by decreasing polymorphonuclear cells and TNF-α expression in the tooth extraction sockets. Additionally, QQ-controlled PBMNC transplantation partially improved osseous healing of tooth extraction sockets. Interestingly, only 20,000 QQ-controlled PBMNCs per mouse induced these transplantation effects. QQ-controlled PBMNC transplantation did not affect the systemic microenvironment. CONCLUSIONS: Our findings suggest that transplantation of a small amount of QQ-controlled PBMNCs may become novel therapeutic or prevention strategies for BRONJ without any adverse side effects.[Abstract] [Full Text] [Related] [New Search]