These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: l-Serine protects mouse hippocampal neuronal HT22 cells against oxidative stress-mediated mitochondrial damage and apoptotic cell death. Author: Kim KY, Hwang SK, Park SY, Kim MJ, Jun DY, Kim YH. Journal: Free Radic Biol Med; 2019 Sep; 141():447-460. PubMed ID: 31326607. Abstract: The cytoprotective mechanism of l-serine against oxidative stress-mediated neuronal apoptosis was investigated in mouse hippocampal neuronal HT22 cells. Treatment with the reactive oxygen species (ROS) inducer 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) increased cytosolic and mitochondrial ROS and apoptosis, without necrosis, in HT22 cells. ROS-mediated apoptosis was accompanied by the induction of the endoplasmic reticulum (ER) stress-mediated apoptotic pathway, involving CHOP/GADD153 upregulation, JNK and p38 MAPK activation, and caspase-12 and caspase-8 activation, and subsequent induction of the mitochondrial apoptotic pathway through BAK and BAX activation, mitochondrial membrane potential (Δψm) loss, caspase-9 and caspase-3 activation, PARP cleavage, and nucleosomal DNA fragmentation. However, the DMNQ-caused ROS elevation and ER stress- and mitochondrial damage-induced apoptotic events were dose-dependently suppressed by co-treatment with l-serine (7.5-20 mM). Although DMNQ reduced both the intracellular glutathione (GSH) level and the ratios of reduced GSH to oxidized GSH (GSSG), the reduction was restored by co-treatment with l-serine. Co-treatment with GSH or N-acetylcysteine also blocked DMNQ-caused ROS elevation and apoptosis; however, co-treatment with the GSH synthesis inhibitor buthionine sulfoximine significantly promoted ROS-mediated apoptosis and counteracted the protection by l-serine. In HT22 cells, DMNQ treatment appeared to tilt the mitochondrial fusion-fission balance toward fission by down-regulating the levels of profusion proteins (MFN1/2 and OPA1) and inhibitory phosphorylation of profission protein DRP1 at Ser-637, resulting in mitochondrial fragmentation. These DMNQ-caused alterations were prevented by l-serine. A comparison of mitochondrial energetic function between DMNQ- and DMNQ/l-serine-treated HT22 cells showed that the DMNQ-caused impairment of the mitochondrial energy generation capacity was restored by l-serine. These results demonstrate that l-serine can protect neuronal cells against oxidative stress-mediated apoptotic cell death by contributing to intracellular antioxidant GSH synthesis and maintaining the mitochondrial fusion-fission balance.[Abstract] [Full Text] [Related] [New Search]