These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecularly imprinted mesoporous silica incorporating C3N4 dots and CdTe quantum dots as ratiometric fluorescent probe for determination of Malachite Green. Author: Shi H, Zhang L, Yu G, Liu Y, Chen L. Journal: Mikrochim Acta; 2019 Jul 20; 186(8):556. PubMed ID: 31327059. Abstract: A new dual-emission ratiometric fluorescent probe was synthesized and successfully used for the determination of Malachite Green (MG) in fish farming water. The ratiometric fluorescent probe was successfully composited by sol-gel method using C3N4 and CdTe quantum dots as fluorescent materials combined with mesoporous molecularly imprinted polymers. MG quenches the red fluorescence of the CdTe QDs (with excitation/emission wavelengths at 350/680 nm) while the blue fluorescence of C3N4 (with excitation/emission wavelengths at 350/458 nm) remains unchanged. The change of fluorescence color and fluorescence intensity ratio can be successfully used for quantification of malachite green. In addition, the mesoporous structure has a large surface and good adsorption capacity for malachite green. The normalized intensity of fluorescence increases linearly in the 50-1000 ng·mL-1 MG concentration range, and the detection limit is 10 ng·mL-1. The imprinting factor is 3.2. The nanoprobe was applied to the determination of MG in fish farming water samples. Recoveries and relative standard deviations were 92.5-97.8% and 2.5-6.2%, respectively. Graphical abstract Schematic representation of synthesis of molecularly imprinted mesoporous silica ratiometric fluorescent probes incorporating C3N4 dots and CdTe quantum dots for determination of malachite green.[Abstract] [Full Text] [Related] [New Search]