These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis and Bioactivities of New Membrane-Active Agents with Aromatic Linker: High Selectivity and Broad-Spectrum Antibacterial Activity.
    Author: Chu W, Yang Y, Cai J, Kong H, Bai M, Fu X, Qin S, Zhang E.
    Journal: ACS Infect Dis; 2019 Sep 13; 5(9):1535-1545. PubMed ID: 31328496.
    Abstract:
    The worldwide emergence of microbial resistance to antibiotics constitutes an important and growing public health threat, and novel antibiotics are urgently needed. In this report, a series of symmetrical membrane-active agents linked by an aromatic nucleus were designed and synthesized. Some showed high antibacterial activity against clinical drug-resistant bacterial isolates including methicillin-resistant Staphylococcus aureus (MRSA), carbapenemase-producing Enterobacter aerogenes, and delhi metallo-β-lactamase-1-producing Enterobacteriaceae (NDM-1), as well as drug-sensitive bacteria including Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Stenotrophomonas maltophilia. Lead compound 2n, with good selectivity for S. aureus (minimum inhibitory concentration [MIC] 0.25 μg/mL) versus mammalian erythrocytes (hemolytic concentration [HC50] 1211 μg/mL), had notable properties, including stability in complex mammalian fluids, rapid killing of pathogens, ability to eradicate established biofilms, and little induction of bacterial drug-resistance. In a mouse MRSA infection model, compound 2n exhibited a similar level of efficacy to vancomycin in killing bacteria and suppressing inflammation, demonstrating its therapeutic potential.
    [Abstract] [Full Text] [Related] [New Search]