These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fokker-Planck representations of non-Markov Langevin equations: application to delayed systems.
    Author: Giuggioli L, Neu Z.
    Journal: Philos Trans A Math Phys Eng Sci; 2019 Sep 09; 377(2153):20180131. PubMed ID: 31329064.
    Abstract:
    Noise and time delays, or history-dependent processes, play an integral part in many natural and man-made systems. The resulting interplay between random fluctuations and time non-locality are essential features of the emerging complex dynamics in non-Markov systems. While stochastic differential equations in the form of Langevin equations with additive noise for such systems exist, the corresponding probabilistic formalism is yet to be developed. Here we introduce such a framework via an infinite hierarchy of coupled Fokker-Planck equations for the n-time probability distribution. When the non-Markov Langevin equation is linear, we show how the hierarchy can be truncated at n = 2 by converting the time non-local Langevin equation to a time-local one with additive coloured noise. We compare the resulting Fokker-Planck equations to an earlier version, solve them analytically and analyse the temporal features of the probability distributions that would allow to distinguish between Markov and non-Markov features. This article is part of the theme issue 'Nonlinear dynamics of delay systems'.
    [Abstract] [Full Text] [Related] [New Search]