These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Incorporating p-Phenylene as an Electron-Donating Group into Graphitic Carbon Nitride for Efficient Charge Separation.
    Author: Gao H, Guo Y, Yu Z, Zhao M, Hou Y, Zhu Z, Yan S, Liu Q, Zou Z.
    Journal: ChemSusChem; 2019 Sep 20; 12(18):4285-4292. PubMed ID: 31336044.
    Abstract:
    Low charge-separation transport efficiency resulting from structural defects largely limits photocatalytic hydrogen production over polymeric graphitic carbon nitride (PCN) photocatalyst. Herein, an electron-donating group, namely p-phenylene, is incorporated into PCN by a polycondensation reaction between carbon nitride and p-phenylenediamine (or p-benzoquinone) to repair the structural defects. The p-phenylene-modified PCN exhibits an almost fivefold increase in H2 evolution, a threefold increase in photocurrent density, and higher nonradiative rate (0.285 ns-1 ). Spectroscopic studies confirm that p-phenylene tends to bridge the heptazine-based oligomers through a polycondensation reaction. Theoretical calculations reveal that anchoring of the heptazine units by p-phenylene induces localization of h+ and e- on the phenylene and melem moieties, respectively, which effectively separates the charge carriers. This strategy provides an opportunity to overcome structural defects in carbon nitride for efficient photocatalytic solar energy conversion.
    [Abstract] [Full Text] [Related] [New Search]