These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of submicron aerosol volatility in the regional atmosphere in Southern China. Author: Cao LM, Huang XF, Wang C, Zhu Q, He LY. Journal: Chemosphere; 2019 Dec; 236():124383. PubMed ID: 31344616. Abstract: The volatility of atmospheric aerosols greatly influences the gas-particle partitioning, chemical mechanisms and lifetime of aerosols. Due to the complex composition, the volatility of organic aerosol is one of the major sources of uncertainty in measuring and modeling ambient aerosols. Despite high aerosol loading in the atmosphere in China, especially in winter, few field measurements were conducted targeting the volatility of ambient organic aerosol (OA). With the deployment of a thermodenuder-aerosol mass spectrometer (TD-AMS) system, the volatility of non-refractory submicron aerosols (NR-PM1) were measured on an island near the coastal line for the regional air in wintertime in southern China. NO3- and Cl- showed the highest volatility in the NR-PM1 chemical species, while SO42- showed the least volatility. Organic aerosol showed a moderate volatility, evaporating at a stable rate (0.57% °C-1) at temperatures lower than 150 °C and keeping a stable volatility when its loading increases, which could be an advantage for parameterization of OA in air quality models. Based on both positive matrix factorization and chemical mass balance modeling of OA composition, biomass burning OA was found to be the most volatile factor, followed by hydrocarbon-like OA and more-oxidized oxygenated OA. By summarizing the OA volatility measured in this study and in the literature, we found that the volatilities of different OA factors at different locations do not have a clear relationship with the OA oxidation state, possibly due to the vague understanding of local OA aging mechanisms and mixing states.[Abstract] [Full Text] [Related] [New Search]