These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Highly-sensitive and selective determination of bisphenol A in milk samples based on self-assembled graphene nanoplatelets-multiwalled carbon nanotube-chitosan nanostructure. Author: Zou J, Yuan MM, Huang ZN, Chen XQ, Jiang XY, Jiao FP, Zhou N, Zhou Z, Yu JG. Journal: Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109848. PubMed ID: 31349437. Abstract: Graphene nanoplatelets (GNPs), multiwalled carbon nanotube (MWCNTs) and chitosan (CS) were self-assembled by a facile one-step hydrothermal reaction to obtain novel MWCNTs-CS enfolded GNPs (GNPs-MWCNTs-CS) composite. Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), UV-visible (UV-vis) absorption spectroscopy and zeta potential analysis were employed to characterize the morphology, surface composition, interaction, surface charge and stability of the GNPs-MWCNTs-CS composite. The electrochemical behaviors of GNPs-MWCNTs-CS composite modified glassy carbon electrode (GNPs-MWCNTs-CS/GCE) were investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The GNPs-MWCNTs-CS/GCE was used for fast and high sensitive determination of bisphenol A (BPA) by differential pulse voltammetry (DPV). Under the optimum conditions, the calibration curve obtained is linear for the current versus the BPA concentration in the range 0.1-100 μM with a detection limit of 0.05 nM (signal-to-noise ratio of 3, S/N = 3). The between-sensor reproducibility was 1.29% (n = 6) for 0.04 mM BPA. The proposed GNPs-MWCNTs-CS/GCE based sensor showed high resistance to interference, good repeatability and excellent reproducibility. Trace BPA in milk samples could also be reliably determined.[Abstract] [Full Text] [Related] [New Search]