These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Amino-silane-grafted NH2-MIL-53(Al)/polyethersulfone mixed matrix membranes for CO2/CH4 separation. Author: Ahmadijokani F, Ahmadipouya S, Molavi H, Arjmand M. Journal: Dalton Trans; 2019 Sep 17; 48(36):13555-13566. PubMed ID: 31353374. Abstract: Mixed-matrix membranes (MMMs) are promising candidates for carbon dioxide separation. However, their application is limited due to improper dispersion of fillers within the polymer matrix, poor interaction of fillers with polymer chains, and formation of defects and micro-voids at the interface of both phases, which all result in the decline of the gas separation performance of MMMs. In this work, we present a new method to overcome these challenges. To this end, a series of MMMs based on polyethersulfone (PES) as the continuous polymer matrix and MIL-53-derived MOFs as the dispersed filler were prepared. FTIR-ATR, XRD, TGA, FESEM, and N2 adsorption/desorption analyses were employed to characterize the structural properties of the synthesized nanoparticles. The obtained results indicated that 3-aminopropyltriethoxysilane (APTES) molecules were successfully attached onto the surface of NH2-MIL-53(Al). Morphological characterization by FESEM and energy dispersive X-ray mapping (EDX) showed that desirable distribution within the whole membrane thickness, suitable nanoscale dispersion, and excellent interface were achieved by using amino-silane-grafted NH2-MIL-53(Al) (A-MIL-53(Al)) nanoparticles. The permeation results indicated that the permeability of two gases and the ideal CO2/CH4 selectivity enhanced by increasing the concentration of MOFs. In particular, comparing the experimental gas separation results of A-MMM-10 with those of pure PES membrane showed an 84% increase in the CO2 permeability and a 70% increase in CO2/CH4 selectivity. These results suggest that post-synthetic modification of MOF nanoparticles and strong interfacial adhesion between functionalized nanoparticles and polymer matrix could be a useful method to eliminate interfacial voids and improve gas separation efficiency.[Abstract] [Full Text] [Related] [New Search]