These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Monitoring the oxygen supply of skeletal muscle and total oxygen uptake in coronary surgery interventions]. Author: Boekstegers P, Fleckenstein W, Rosport A, Ruschewsky W, Braun U. Journal: Anaesthesist; 1988 May; 37(5):287-96. PubMed ID: 3135766. Abstract: In patients undergoing aortocoronary bypass operations, extensive monitoring is used for early recognition of complications that may decrease the oxygen supply of body organs. However, none of the parameters usually monitored during open-heart surgery yield information on the state of oxygen supply to a certain organ. Particularly during and after extracorporeal circulation (ECC), undetected organ hypoxia may occur and lead to an increase in postoperative complications. In order to study whether functionally significant changes in oxygen supply to skeletal muscle occur during extracorporeal circulation, in 14 patients undergoing aortocoronary bypass operations pO2 histograms from local pO2 values in resting skeletal muscle were monitored. Intra- and postoperatively, whole-body oxygen uptake (VO2) and pO2 histograms of skeletal muscle were simultaneously measured to determine whether the observed decrease in VO2 during cooling of the patient or the increase in VO2 during rewarming was reflected in the distribution of tissue pO2 in skeletal muscle. PATIENTS AND METHODS. Fourteen patients (aged 42 to 68; 12 male, 2 female) scheduled for 2-4 aortocoronary venous bypass grafts were studied. Measuring periods of 6 min were undertaken after induction of anesthesia (1), after thoracotomy (2), during ECC (3), after ECC (2), and every hour postoperatively up to 5 h. The following data were measured during each period: pO2 histograms of the biceps brachii muscle using a pO2 histograph VO2 using open indirect calorimetry; arterial (a. radialis) and venous (v. cava superior) blood gases, acid-base balances, and blood pressures; venous lactate (v. cava superior); muscle and rectal temperatures. RESULTS. During ECC mean muscle pO2 in all 14 patients decreased from 25 to 14 mmHg. In 7 of 14 patients pO2 values between 0 and 5 mmHg had the highest incidence (left-shifted pO2 histograms). After ECC mean muscle pO2 increased to the same value observed before ECC (25 mmHg). During the first 3 h postoperatively an intermediate decrease in mean muscle pO2 (range 23%-46%) occurred in each patient. Stable values above 20 mmHg were reattained 4 h postoperatively. The postoperative increase in individual VO2 was correlated to the increase in body temperature (r = 0.84); in 5 patients with severe shivering, VO2 was markedly increased (up to 130% compared to the last intraoperative value).(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]