These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mixed-Matrix Membranes Formed from Imide-Functionalized UiO-66-NH2 for Improved Interfacial Compatibility.
    Author: Qian Q, Wu AX, Chi WS, Asinger PA, Lin S, Hypsher A, Smith ZP.
    Journal: ACS Appl Mater Interfaces; 2019 Aug 28; 11(34):31257-31269. PubMed ID: 31362491.
    Abstract:
    Mixed-matrix membranes (MMMs) formed by dispersing metal-organic framework (MOF) particles in polymers have attracted significant attention because these composite systems can potentially surpass the separation performance of pure polymers alone. However, performance improvements are often unrealized because of poor interfacial compatibility between the MOF and the polymer, which results in interfacial defects. From a practical perspective, strategies are needed to address these defects so that MMMs can be deployed in real-world separation processes. From a fundamental perspective, strategies are needed to reliably form defect-free MMMs so that transport models can be applied to estimate pure MOF property sets, thereby enabling the development of robust structure-property relationships. To address these interfacial challenges, we have developed a method to surface-functionalize a UiO-66-NH2 MOF with a nanoscopic shell of covalently tethered 4,4'-(hexafluoroisopropylidene)diphthalic anhydride-Durene oligomers. When combined with a high-molecular-weight polymer of identical chemical structure to that of the imide-functional MOF surface, defect-free MMMs with uniform particle dispersions can be formed. With this technique, both permeabilities and selectivities of select gases in the MMMs were improved at loadings ranging from 5 to 40 wt %. At a 40 wt % loading, CO2 permeability and CO2/CH4 selectivity were enhanced by 48 and 15%, respectively. Additionally, pure MOF permeabilities for H2, N2, O2, CH4, and CO2 were predicted by the Maxwell model.
    [Abstract] [Full Text] [Related] [New Search]