These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ultrahigh Hole Mobility of Sn-Catalyzed GaSb Nanowires for High Speed Infrared Photodetectors. Author: Sun J, Peng M, Zhang Y, Zhang L, Peng R, Miao C, Liu D, Han M, Feng R, Ma Y, Dai Y, He L, Shan C, Pan A, Hu W, Yang ZX. Journal: Nano Lett; 2019 Sep 11; 19(9):5920-5929. PubMed ID: 31374165. Abstract: Owing to the relatively low hole mobility, the development of GaSb nanowire (NW) electronic and photoelectronic devices has stagnated in the past decade. During a typical catalyst-assisted chemical vapor deposition (CVD) process, the adopted metallic catalyst can be incorporated into the NW body to act as a slight dopant, thus regulating the electrical properties of the NW. In this work, we demonstrate the use of Sn as a catalyst and dopant for GaSb NWs in the surfactant-assisted CVD growth process. The Sn-catalyzed zinc-blende GaSb NWs are thin, long, and straight with good crystallinity, resulting in a record peak hole mobility of 1028 cm2 V-1 s-1. This high mobility is attributed to the slight doping of Sn atoms from the catalyst tip into the NW body, which is verified by the red-shifted photoluminescence peak of Sn-catalyzed GaSb NWs (0.69 eV) compared with that of Au-catalyzed NWs (0.74 eV). Furthermore, the parallel array NWs also show a high peak hole mobility of 170 cm2 V-1 s-1, a high responsivity of 61 A W-1, and fast rise and decay times of 195.1 and 380.4 μs, respectively, under the illumination of 1550 nm infrared light. All of the results demonstrate that the as-prepared Sn-catalyzed GaSb NWs are promising for application in next-generation electronics and optoelectronics.[Abstract] [Full Text] [Related] [New Search]