These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genomic and biological features of Plasmodium falciparum resistance against antimalarial endoperoxide N-89. Author: Morita M, Hayashi K, Sato A, Hiramoto A, Kaneko O, Isogawa R, Kurosaki Y, Miyoshi SI, Chang KS, Wataya Y, Kim HS. Journal: Gene; 2019 Oct 20; 716():144016. PubMed ID: 31377318. Abstract: Drug resistance of malaria parasites remains a problem affecting antimalarial treatment and control of the disease. We previously synthesized an antimalarial endoperoxide, N-89, having high antimalarial effects in vitro and in vivo. In this study we seek to understand the resistant mechanism against N-89 by establishing a highly N-89-resistant clone, named NRC10H, of the Plasmodium falciparum FCR-3 strain. We describe gene mutations in the parent FCR-3 strain and the NRC10H clone using whole-genome sequencing and subsequently by expression profiling using quantitative real-time PCR. Seven genes related to drug resistance, proteolysis, glycophosphatidylinositol anchor biosynthesis, and phosphatidylethanolamine biosynthesis exhibited a single amino acid substitution in the NRC10H clone. Among these seven genes, the multidrug resistance protein 2 (mdr2) variant A532S was found only in NRC10H. The genetic status of the P. falciparum endoplasmic reticulum-resident calcium binding protein (PfERC), a potential target of N-89, was similar between the NRC10H clone and the parent FCR-3 strain. These findings suggest that the genetic alterations of the identified seven genes, in particular mdr2, in NRC10H could give rise to resistance of the antimalarial endoperoxide N-89.[Abstract] [Full Text] [Related] [New Search]