These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional lipid polymeric nanoparticles for oral drug delivery: Rapid mucus penetration and improved cell entry and cellular transport. Author: Liu Y, Jiang Z, Hou X, Xie X, Shi J, Shen J, He Y, Wang Z, Feng N. Journal: Nanomedicine; 2019 Oct; 21():102075. PubMed ID: 31377378. Abstract: To improve Biopharmaceutics Classification System class IV drug bioavailability, mucus and underlying intestinal epithelial barriers must be overcome. Hydrophilic nanoparticle coatings may hinder cellular uptake and transport. We integrated hydrophilic, detachable poly(N-(2-hydroxypropyl) methacrylamide) with vitamin B12-modified chitosan into lipid polymeric nanoparticles (H/VC-LPNs) to enhance mucus penetration, intracellular uptake, and transepithelial absorption. Multiple particle tracking revealed accelerated mucus diffusion into porcine mucus in vitro. The nanoparticles increased uptake and intracellular distribution in Caco-2 cells, which may involve intrinsic factor receptor-mediated endocytosis and intercellular tight junctions. Integration of improved mucus penetration and intracellular absorption was confirmed by in vitro internalization kinetics in HT29-MTX/Caco-2 co-cultures and in vivo distribution, transport, and mouse Peyer's patch absorption. H/VC-LPNs substantially increased curcumin bioavailability in rats. A nanocarrier with a dissociable shell, receptor-mediated intracellular penetration, and paracellular transport may be promising for oral curcumin delivery. This study identified the key factors involved in oral bioavailability enhancement.[Abstract] [Full Text] [Related] [New Search]