These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Blockade of TIGIT/CD155 Signaling Reverses T-cell Exhaustion and Enhances Antitumor Capability in Head and Neck Squamous Cell Carcinoma. Author: Wu L, Mao L, Liu JF, Chen L, Yu GT, Yang LL, Wu H, Bu LL, Kulkarni AB, Zhang WF, Sun ZJ. Journal: Cancer Immunol Res; 2019 Oct; 7(10):1700-1713. PubMed ID: 31387897. Abstract: Immunosuppression is common in head and neck squamous cell carcinoma (HNSCC). In previous studies, the TIGIT/CD155 pathway was identified as an immune-checkpoint signaling pathway that contributes to the "exhaustion" state of infiltrating T cells. Here, we sought to explore the clinical significance of TIGIT/CD155 signaling in HNSCC and identify the therapeutic effect of the TIGIT/CD155 pathway in a transgenic mouse model. TIGIT was overexpressed on tumor-infiltrating CD8+ and CD4+ T cells in both HNSCC patients and mouse models, and was correlated with immune-checkpoint molecules (PD-1, TIM-3, and LAG-3). TIGIT was also expressed on murine regulatory T cells (Treg) and correlated with immune suppression. Using a human HNSCC tissue microarray, we found that CD155 was expressed in tumor and tumor-infiltrating stromal cells, and also indicated poor overall survival. Multispectral IHC indicated that CD155 was coexpressed with CD11b or CD11c in tumor-infiltrating stromal cells. Anti-TIGIT treatment significantly delayed tumor growth in transgenic HNSCC mouse models and enhanced antitumor immune responses by activating CD8+ T-cell effector function and reducing the population of Tregs. In vitro coculture studies showed that anti-TIGIT treatment significantly abrogated the immunosuppressive capacity of myeloid-derived suppressor cells (MDSC), by decreasing Arg1 transcripts, and Tregs, by reducing TGFβ1 secretion. In vivo depletion studies showed that the therapeutic efficacy by anti-TIGIT mainly relies on CD8+ T cells and Tregs. Blocking PD-1/PD-L1 signaling increased the expression of TIGIT on Tregs. These results present a translatable method to improve antitumor immune responses by targeting TIGIT/CD155 signaling in HNSCC.[Abstract] [Full Text] [Related] [New Search]