These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Which Spreading Depolarizations Are Deleterious To Brain Tissue? Author: Shuttleworth CW, Andrew RD, Akbari Y, Ayata C, Balu R, Brennan KC, Boutelle M, Carlson AP, Dreier JP, Fabricius M, Farkas E, Foreman B, Helbok R, Henninger N, Jewell SL, Jones SC, Kirov SA, Lindquist BE, Maciel CB, Okonkwo D, Reinhart KM, Robertson RM, Rosenthal ES, Watanabe T, Hartings JA. Journal: Neurocrit Care; 2020 Feb; 32(1):317-322. PubMed ID: 31388871. Abstract: Spreading depolarizations (SDs) are profound disruptions of cellular homeostasis that slowly propagate through gray matter and present an extraordinary metabolic challenge to brain tissue. Recent work has shown that SDs occur commonly in human patients in the neurointensive care setting and have established a compelling case for their importance in the pathophysiology of acute brain injury. The International Conference on Spreading Depolarizations (iCSD) held in Boca Raton, Florida, in September of 2018 included a discussion session focused on the question of "Which SDs are deleterious to brain tissue?" iCSD is attended by investigators studying various animal species including invertebrates, in vivo and in vitro preparations, diseases of acute brain injury and migraine, computational modeling, and clinical brain injury, among other topics. The discussion included general agreement on many key issues, but also revealed divergent views on some topics that are relevant to the design of clinical interventions targeting SDs. A draft summary of viewpoints offered was then written by a multidisciplinary writing group of iCSD members, based on a transcript of the session. Feedback of all discussants was then formally collated, reviewed and incorporated into the final document. It is hoped that this report will stimulate collection of data that are needed to develop a more nuanced understanding of SD in different pathophysiological states, as the field continues to move toward effective clinical interventions.[Abstract] [Full Text] [Related] [New Search]