These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Polyamines affect growth of cultured rat cerebellar neurons in different sera. Author: Gilad GM, Gilad VH. Journal: Int J Dev Neurosci; 1986; 4(3):195-208. PubMed ID: 3138895. Abstract: The study examines the effects of polyamines on growth of cultured neurons from 6-day-old rat cerebellar cortex, by means of: (a) irreversible inhibition of ornithine decarboxylase activity with alpha-difluoromethylornithine, and (b) treatment with the exogenous diamine putrescine and the polyamines spermidine and spermine, in the presence of sera from different sources. Inhibition of ornithine decarboxylase activity starting at plating time led after 24 hr to a partial inhibition of cell aggregation with a drastic (90%) inhibition of neurite formation. However, after 48 hr of enzyme inhibition aggregation and neurite formation increased to approach the 24 hr control values and eventually cultures fully recovered. Polyamines added at plating time in the presence of fetal calf serum led to a permanent dose-dependent inhibition of aggregation and neurite formation, spermine being effective at lower doses (spermine less than spermidine much less than putrescine). Adhesion of cells to polylysine coated surfaces was not affected by polyamines. Recovery from the cytostatic polyamine effect was observed after washing and addition of fresh medium. Prevention of the effect was achieved in the presence of aminoguanidine, an inhibitor of diamine and polyamine oxidases. The preventive effect of aminoguanidine was dose polyamine-dependent, with higher aminoguanidine concentrations needed to prevent the spermine effect (spermine much greater than spermidine greater than putrescine). The polyamine effects were observed in the presence of fetal calf, heat-inactivated fetal calf and human sera, but not with rat serum. Addition of polyamines to 24-hr-old cultured neurons, in the presence of fetal calf serum, led 12 hr later to cell death. This lethal effect could be inhibited by aminoguanidine. We conclude: (a) irreversible inhibition of ornithine decarboxylase activity delays but does not prevent neuronal growth in culture; (b) oxidation products of extracellular polyamines inhibit cell aggregation and neurite formation of cultured neuroblasts, and have lethal effects on growing neurons in culture, and (c) different pharmacological effects of polyamines can be expected in different species.[Abstract] [Full Text] [Related] [New Search]