These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bacterial exotoxins and endothelial permeability for water and albumin in vitro. Author: Suttorp N, Hessz T, Seeger W, Wilke A, Koob R, Lutz F, Drenckhahn D. Journal: Am J Physiol; 1988 Sep; 255(3 Pt 1):C368-76. PubMed ID: 3138913. Abstract: Effects of Staphylococcus aureus alpha-toxin and Pseudomonas aeruginosa cytotoxin on the permeability of an endothelial monolayer were studied. Porcine pulmonary artery endothelial cells were grown on a polycarbonate membrane, mounted in a chamber, and exposed to a continuous hydrostatic pressure of 10 cmH2O. On application of this trans-endothelial pressure, endothelial monolayer became "sealed," i.e., the filtration rate for water decreased and the reflection coefficient for albumin increased, reaching a plateau after 1-2 h. Sealed monolayer had a hydraulic conductivity of 2.1 X 10(-6) cm.s-1.cmH2O and an albumin reflection coefficient of 0.73. Permeability of the monolayer was increased on addition of an excess of EDTA and reversed on readdition of calcium. Within 60-90 min after addition of 1 microgram/ml alpha-toxin, the filtration rate increased 75-fold, and the albumin reflection coefficient dropped to 0.20. These changes in permeability were accompanied by cell retraction and formation of large intercellular gaps between endothelial cells. Effects of alpha-toxin were abolished by preincubation with neutralizing antibodies and by inhibitors of calmodulin function. Pseudomonas aeruginosa cytotoxin (25 and 50 micrograms/ml) also increased the permeability of the endothelial monolayer, but it was only about one-third as effective as alpha-toxin.[Abstract] [Full Text] [Related] [New Search]