These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of a Novel Scaffold for Inhibition of Dipeptidyl Peptidase-4. Author: Mishra A, Cross M, Hofmann A, Coster MJ, Karim A, Sattar A. Journal: J Comput Biol; 2019 Dec; 26(12):1470-1486. PubMed ID: 31390221. Abstract: Dipeptidyl peptidase-4 (DPP-4) is considered a major drug target for type 2 diabetes mellitus (T2DM). In addition to T2DM, a regulatory role of DPP-4 was also found in cardiovascular diseases. Existing DPP-4 inhibitors have been reported to have several adverse effects. In this study, a computer-aided drug design approach and its use to detect a novel class of inhibitor for DPP-4 are reported. Through structure and pharmacophore-based screening, we identified 13 hit compounds from an ∼4-million-compound library. Physical interactions of these hits with DPP-4 were studied using docking and explicit solvent molecular dynamics (MD) simulations. Later, MMPBSA binding energy was calculated for the ligand/protein simulation trajectories to determine the stability of compounds in the binding cavity. These compounds have a novel scaffold and exhibited a stable binding mode. "Best-in-screen" compounds (or their closest available analogs) were resourced and their inhibition of DPP-4 activity was experimentally validated using an in vitro enzyme activity assay in the presence of 100 and 10 μM compounds. These assays identified a compound with a spirochromanone center with 53% inhibition activity at a 100 μM concentration. A further five spirochromanone compounds were synthesized and examined in silico and in vitro; again, one compound showed 53% inhibitory activity action at 100 μM. Overall, this study identified two novel "spirochromanone" compounds that lowered DPP-4 activity by more than ∼50% at 100 μM. This study also showed the impact of fast in silico drug design techniques utilizing virtual screening and MD to identify novel scaffolds to bind and inhibit DPP-4. Spirochromanone motif identified here may be used to design molecules to achieve drug-like inhibitory action against DPP-4.[Abstract] [Full Text] [Related] [New Search]