These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Uniform and Easy-To-Prepare Glycopolymer-Brush Interface for Rapid Protein (Anti-)Adhesion Sensing. Author: Li J, Tian XY, Zong LP, Zhang Q, Zhang XJ, Marks R, Cosnier S, Shan D. Journal: ACS Appl Mater Interfaces; 2019 Sep 04; 11(35):32366-32372. PubMed ID: 31397991. Abstract: Glycopolymers have emerged as powerful and versatile glycan analogues for the investigation of cellular signal transduction. In this study, a layer of the glycopolymer-brush (GlyB) interface was functionalized on the surface of gold substrates. In order to enhance the capability and accessibility of this transducer interface, a combined protocol of copper(0)-mediated living radical polymerization (Cu(0)-LRP) with subsequent "CuAAC" click reaction was utilized to synthesize a set of novel glycopolymer precursors with a tunable scaffold structure and pyranose ligands. The resulting glycopolymer exhibited a fine-tuned molecular weight with a minor dispersity of 1.27. Through surface plasmon resonance (SPR) analysis, various GlyB interfaces exhibiting different saccharide moieties (glucose, mannose, and galactose) were examined to study their adhesion or antiadhesion potential toward three types of proteins, concanavalin A, bovine serum albumin, and peanut agglutinin (PNA). The strong affinity between poly(galactose) and PNA was further employed to construct a proof-of-concept aggregation-mediated sensing system. This minimal naked-eye sensor that consisted of only two substances, namely, gold nanoparticles and glycopolymers, was characterized and tested for its potential in protein quantification.[Abstract] [Full Text] [Related] [New Search]