These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Crystallographic Visualization of Postsynthetic Nickel Clusters into Metal-Organic Framework. Author: Wang XN, Zhang P, Kirchon A, Li JL, Chen WM, Zhao YM, Li B, Zhou HC. Journal: J Am Chem Soc; 2019 Aug 28; 141(34):13654-13663. PubMed ID: 31398288. Abstract: Postsynthetic metalation (PSM) has been employed as a robust method for the postsynthetic modification of metal-organic frameworks (MOFs). However, the lack of relevant information that can be obtained for the postsynthetically introduced metallic ions has hindered the development of PSM applications. Thanks to the advancement in single-crystal X-ray diffraction (SCXRD) technology, there have been a few recent examples in which successful postsynthetic introduction of single metal ions into MOFs occurred at the defined chelating sites. These works have provided useful explanations about the complicated host-guest chemistry involved in PSMs. On the other hand, there are only limited examples with crystallographic snapshots of the postsynthetic installation of metal clusters into the pores of MOFs using an ordinary SCXRD due to the loss of crystallinity of parent matrix during the PSM process. Herein, by the careful selection of starting materials and controlling the reaction conditions, we report the first crystallographic visualization of metal clusters inserted into Zr-based MOFs via PSM. The structural advantages of the parent Zr-MOF, which are inherited from the stable Zr6 cluster and triazole-containing dicarboxylate ligand, ensure both the preservation of high crystallinity and the presence of flexible coordination sites for PSM. Furthermore, PSM of metal clusters in a MOF pore space enhances stability of the final samples while also imparting the functionality of a successful catalyst toward ethylene dimerization reaction. The related construction ideas and structural information detailed in this work can help lay the foundation for further advancements using the postmodification of MOFs as well as open new doors for the utilization of SCXRD technology in the field of MOFs.[Abstract] [Full Text] [Related] [New Search]