These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fecal metabonomics combined with 16S rRNA gene sequencing to analyze the changes of gut microbiota in rats with kidney-yang deficiency syndrome and the intervention effect of You-gui pill. Author: Chen R, Wang J, Zhan R, Zhang L, Wang X. Journal: J Ethnopharmacol; 2019 Nov 15; 244():112139. PubMed ID: 31401318. Abstract: ETHNOPHARMACOLOGICAL RELEVANCE: A myriad of evidence have shown that kidney-yang deficiency syndrome (KYDS) is associated with metabolic disorders of the intestinal microbiota, while TCMs can treat KYDS by regulating gut microbiota metabolism. However, the specific interplay between KYDS and intestinal microbiota, and the intrinsic regulation mechanism of You-gui pill (YGP) on KYDS' gut microbiota remains largely unknown so far. MATERIALS AND METHODS: In the present study, fecal metabonomics combined with 16S rRNA gene sequencing analysis were used to explore the mutual effect between KYDS and intestinal flora, and the intrinsic regulation mechanism of YGP on KYDS's gut microbiota. Rats' feces from control (CON) group, KYDS group and YGP group were collected, and metabolomic analysis was performed using 1H NMR technique combined with multivariate statistical analysis to obtain differential metabolites. Simultaneously, 16S rRNA gene sequencing analysis based on the Illumina HiSeq sequencing platform and ANOVA analysis were used to analyze the composition of the intestinal microbiota in the stool samples and to screen for the significant altered microbiota at the genus level. After that, MetaboAnalyst database and PICRUSt software were apply to conduct metabolic pathway analysis and functional prediction analysis of the screened differential metabolites and intestinal microbiota, respectively. What's more, Pearson correlation analysis was performed on these differential metabolites and gut microbiota. RESULTS: Using fecal metabonomics, KYDS was found to be associated with 21 differential metabolites and seven potential metabolic pathways. These metabolites and metabolic pathways were mainly involved in amino acid metabolism, energy metabolism, methylamine metabolism, bile acid metabolism and urea cycle, and short-chain fatty acid metabolism. Through 16S rRNA gene sequencing analysis, we found that KYDS was related to eleven different intestinal microbiotas. These gut microbiota were mostly involved in amino acid metabolism, energy metabolism, nervous, endocrine, immune and digestive system, lipid metabolism, and carbohydrate metabolism. Combined fecal metabonomics and 16S rRNA gene sequencing analysis, we further discovered that KYDS was primarily linked to three gut microbiotas (i.e. Bacteroides, Desulfovibrio and [Eubacterium]_coprostanoligenes_group) and eleven related metabolites (i.e. deoxycholate, n-butyrate, valine, isoleucine, acetate, taurine, glycine, α-gluconse, β-glucose, glycerol and tryptophan) mediated various metabolic disorders (amino acid metabolism, energy metabolism, especially methylamine metabolism, bile acid metabolism and urea cycle, short-chain fatty acid metabolism. nervous, endocrine, immune and digestive system, lipid metabolism, and carbohydrate metabolism). YGP, however, had the ability to mediate four kinds of microbes (i.e. Ruminiclostridium_9, Ruminococcaceae_UCG-007, Ruminococcaceae_UCG-010, and uncultured_bacterium_f_Bacteroidales_S24-7_group) and ten related metabolites (i.e. deoxycholate, valine, isoleucine, alanine, citrulline, acetate, DMA, TMA, phenylalanine and tryptophan) mediated amino acid metabolism, especially methylamine metabolism, bile acid metabolism and urea cycle, short-chain fatty acid metabolism, endocrine, immune and digestive system, and lipid metabolism, thereby exerting a therapeutic effect on KYDS rats. CONCLUSION: Overall, our findings have preliminary confirmed that KYDS is closely related to metabolic and microbial dysbiosis, whereas YGP can improve the metabolic disorder of KYDS by acting on intestinal microbiota. Meanwhile, this will lay the foundation for the further KYDS's metagenomic research and the use of intestinal microbiotas as drug targets to treat KYDS.[Abstract] [Full Text] [Related] [New Search]