These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mo-Based crystal POMOFs with a high electrochemical capacitor performance. Author: Chai D, Xin J, Li B, Pang H, Ma H, Li K, Xiao B, Wang X, Tan L. Journal: Dalton Trans; 2019 Sep 14; 48(34):13026-13033. PubMed ID: 31403634. Abstract: Mo-Based crystalline polyoxometalate-based metal-organic frameworks (POMOFs), namely, [CuIH2(C12H12N6)(PMo12O40)]·[(C6H15N)(H2O)2] (1) and [Cu(C12H12N6)4(PMoMoO39)] (2) (C12H12N6, 1,4-bis(triazol-1-ylmethyl) benzene, abbreviation btx) as promising capacitor electrode materials were synthesized by a hydrothermal reaction. Compound 1 consisted of two-dimensional (2D) lattice structures with free triethylamine (abbreviation, TEA) molecules and H2O molecules, and compound 2 showed a 3D host-guest structure, in which 1D polyoxometalate (POM) chains were encapsulated into a 3D Cu(ii)-btx metal-organic framework (MOF). The compound 1-based electrode showed much higher specific capacitance (249.0 F g-1 at 3 A g-1) than the 2-based one (154.5 F g-1 at 3 A g-1). Moreover, the specific capacitance of the 1-based electrode was not only higher than those of the majority of the reported POMOF materials as supercapacitors, but also higher than those of most state-of-the-art MOF-based and POM-based supercapacitor electrode materials. This superior capacitance performance of the 1-based electrode could be attributed to the high redox capacity and excellent electronic conductivity. More importantly, this work may open a new avenue for optimizing the performance of POMOF-based capacitor electrode materials.[Abstract] [Full Text] [Related] [New Search]