These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hypothalamic mechanisms associated with neuropeptide K-induced anorexia in Japanese quail (Coturnix japonica). Author: Wang J, Gilbert ER, Cline MA. Journal: Comp Biochem Physiol A Mol Integr Physiol; 2019 Nov; 237():110539. PubMed ID: 31404649. Abstract: Central administration of neuropeptide K (NPK), a 36-amino acid peptide, is associated with anorexigenic effects in rodents and chickens. The mechanisms underlying the potent anorexigenic effects of NPK are still poorly understood. Thus, the aim of the present study was to identify the hypothalamic nuclei and neuropeptides that mediate anorexic effects of NPK in 7 day-old Japanese quail (Coturnix japonica). After a 6 h fast, intracerebroventricular (ICV) injection of NPK decreased food and water intake for 180 min post-injection. Quail injected with NPK had more c-Fos immunoreactive cells in the arcuate nucleus (ARC), lateral hypothalamus, and paraventricular nucleus (PVN) compared to the birds that were injected with the vehicle. In the ARC of NPK-injected quail, there was decreased neuropeptide Y (NPY), NPY receptor sub-type 1, and agouti-related peptide mRNA, and increased CART, POMC, and neurokinin receptor 1 mRNA. NPK-injected quail expressed greater amounts of corticotropin-releasing factor (CRF), CRF receptor sub-type 2, melanocortin receptors 3 and 4, and urocortin 3 mRNA in the PVN. In conclusion, results provide insights into understanding NPK-induced changes in hypothalamic physiology and feeding behavior, and suggest that the anorexigenic effects of NPK involve the ARC and PVN, with increased CRF and melanocortin and reduced NPY signaling.[Abstract] [Full Text] [Related] [New Search]