These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Revegetation differentially influences microbial trophic groups in a Qinghai-Tibetan alpine steppe ecosystem. Author: Qin M, Shi G, Miranda JP, Liu Y, Meng Y, Pan J, Chai Y, Jiang S, Zhou G, Feng H, Zhang Q. Journal: J Basic Microbiol; 2019 Oct; 59(10):992-1003. PubMed ID: 31410872. Abstract: Revegetation accelerates the recovery of degraded lands. Different microbial trophic groups underpin this acceleration from the aspects of soil structure stabilization, nutrient accumulation, and ecosystem functions. However, little is known about how revegetation influences the community and biodiversity of different soil microbial trophic groups. Here, six revegetation treatments with different plantings of plant species were established at an excavation pit in the Qinghai-Tibetan Plateau. Communities of plant, bacteria, and several key soil fungal groups were investigated after 12 years of revegetation. Plant and all microbial trophic group compositions were markedly influenced by revegetation treatments. Total fungal and pathogenic fungal compositions were not significantly predicted by any factor of plant and soil, but arbuscular mycorrhizal fungal composition could be mainly predicted by plant composition and plant P content. Bacterial composition was mainly determined by soil total N, organic carbon concentration, and moisture content; and saprotrophic fungal composition was mainly determined by soil organic carbon. Soil pH was the strongest factor to predict bacterial metabolic functions. Our findings highlight that even the differences of microbial compositions were because of different revegetation treatments, but each trophic microbial composition had different relations with plant and/or soil; especially, the bacterial community and metabolic functions and saprotrophic fungal community were more correlated with soil properties rather than plant community or characteristics per se.[Abstract] [Full Text] [Related] [New Search]