These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis of MgAC-Fe3O4/TiO2 hybrid nanocomposites via sol-gel chemistry for water treatment by photo-Fenton and photocatalytic reactions.
    Author: Bui VKH, Park D, Pham TN, An Y, Choi JS, Lee HU, Kwon OH, Moon JY, Kim KT, Lee YC.
    Journal: Sci Rep; 2019 Aug 14; 9(1):11855. PubMed ID: 31413304.
    Abstract:
    MgAC-Fe3O4/TiO2 hybrid nanocomposites were synthesized in different ratios of MgAC-Fe3O4 and TiO2 precursor. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray fluorescence spectrometry (XRF), electron spin resonance spectrometry (ESR), Brunauer-Emmett-Teller (BET), photoluminescence (PL), and UV photoelectron spectroscopy (UPS) were used to characterize the nanocomposites. The increase of MgAC-Fe3O4, in the hybrid nanocomposites' core-shell structure, led to the decrease of anatase TiO2 peaks, thus reducing the photo-Fenton and photocatalytic activities. According to the obtained data, MgAC-Fe3O4 [0.05 g]/TiO2 showed the best photo-Fenton and photocatalytic activities, having removed ~93% of MB (photo-Fenton reaction) and ~80% of phenol (photocatalytic reaction) after 20 and 80 mins, respectively. On the pilot scale (30 L), MgAC-Fe3O4 [0.05 g]/TiO2 was completely removed after 27 and 30 hours by the photo-Fenton and photocatalytic activities, respectively. The synergistic effect gained from the combined photo-Fenton and photocatalytic activities of Fe3O4 and TiO2, respectively, was credited for the performances of the MgAC-Fe3O4/TiO2 hybrid nanocomposites.
    [Abstract] [Full Text] [Related] [New Search]